Web Users Clustering
نویسندگان
چکیده
Web log mining is a new subfield of data mining research. It aims at discovery of trends and regularities in web users' access patterns. This paper presents a new algorithm for automated segmentation of web users based on their access patterns. The results may lead to an improved organization of the web documents for navigational convenience.
منابع مشابه
A density based clustering approach to distinguish between web robot and human requests to a web server
Today world's dependence on the Internet and the emerging of Web 2.0 applications is significantly increasing the requirement of web robots crawling the sites to support services and technologies. Regardless of the advantages of robots, they may occupy the bandwidth and reduce the performance of web servers. Despite a variety of researches, there is no accurate method for classifying huge data ...
متن کاملHierarchical Fuzzy Clustering Semantics (HFCS) in Web Document for Discovering Latent Semantics
This paper discusses about the future of the World Wide Web development, called Semantic Web. Undoubtedly, Web service is one of the most important services on the Internet, which has had the greatest impact on the generalization of the Internet in human societies. Internet penetration has been an effective factor in growth of the volume of information on the Web. The massive growth of informat...
متن کاملUse of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملClustering of Web Users Based on Access Patterns
The clustering of the Web users based on their access patterns is studied. Access patterns of the Web users are extracted from Web servers' log les, and then organized into sessions which represent episodes of interaction between Web users and the Web server. Using attributed-oriented induction, the sessions are then generalized according to the page hierarchy which organizes pages according to...
متن کاملCOWES: Clustering Web Users Based on Historical Web Sessions
Clustering web users is one of the most important research topics in web usage mining. Existing approaches cluster web users based on the snapshots of web user sessions. They do not take into account the dynamic nature of web usage data. In this paper, we focus on discovering novel knowledge by clustering web users based on the evolutions of their historical web sessions. We present an algorith...
متن کاملFinding Community Base on Web Graph Clustering
Search Pointers organize the main part of the application on the Internet. However, because of Information management hardware, high volume of data and word similarities in different fields the most answers to the user s’ questions aren`t correct. So the web graph clustering and cluster placement in corresponding answers helps user to achieve his or her intended results. Community (web communit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002